Skip to main content
padlock icon - secure page this page is secure

Distributed Out‐of‐Core Stochastic Progressive Photon Mapping

Buy Article:

$52.00 + tax (Refund Policy)

At present, stochastic progressive photon mapping (SPPM) is one of the most comprehensive methods for a consistent global illumination computation. Even though the number of photons is unlimited due to their progressive nature, the scene size is still bound by the available main memory. In this paper, we present the first consistent out‐of‐core SPPM algorithm. In order to cope with large scenes, we automatically subdivide the geometry and parallelly trace photons and eye rays in a portal‐based system, distributed across multiple machines in a commodity cluster. Moreover, modifications of the original SPPM method are introduced that keep both the utilization of tracer machines high and the network traffic low. Therefore, compared to a portal‐based single machine setup, our distributed approach achieves a significant speedup. We compare a GPU‐based with a CPU‐based implementation and demonstrate our system in multiple large test scenes of up to 90 million triangles. At present, stochastic progressive Q21 photon mapping (SPPM) is one of the most comprehensive methods for a consistent global illumination computation. Even though the number of photons is unlimited due to its progressive nature, the scene size is still bound by the available main memory. In this paper, we present the first consistent out‐of‐core SPPM algorithm. In order to cope with large scenes, we automatically subdivide the geometry and parallelly trace photons and eye rays in a portal‐based system, distributed across multiple machines in a commodity cluster. Moreover, modifications of the original SPPM method are introduced that keep both the utilization of tracer machines high and the network traffic low.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: I.3.7 [Computer Graphics]: Three‐Dimensional Graphics and Realism–Ray tracing; global illumination; out‐of‐core rendering; photon mapping

Document Type: Research Article

Publication date: September 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more