Skip to main content
padlock icon - secure page this page is secure

A Weighted Delaunay Triangulation Framework for Merging Triangulations in a Connectivity Oblivious Fashion

Buy Article:

$52.00 + tax (Refund Policy)

Simplicial meshes are useful as discrete approximations of continuous spaces in numerical simulations. In some applications, however, meshes need to be modified over time. Mesh update operations are often expensive and brittle, making the simulations unstable. In this paper we propose a framework for updating simplicial meshes that undergo geometric and topological changes. Instead of explicitly maintaining connectivity information, we keep a collection of weights associated with mesh vertices, using a Weighted Delaunay Triangulation (WDT). These weights implicitly define mesh connectivity and allow direct merging of triangulations. We propose two formulations for computing the weights, and two techniques for merging triangulations, and finally illustrate our results with examples in two and three dimensions. Simplicial meshes are useful as discrete approximations of continuous spaces in numerical simulations. In some applications, however, meshes need to be modified over time. Mesh update operations are often expensive and brittle, making the simulations unstable. In this paper we propose a framework for updating simplicial meshes that undergo geometric and topological changes. Instead of explicitly maintaining connectivity information, we keep a collection of weights associated with mesh vertices, using a Weighted Delaunay Triangulation (WDT). These weights implicitly define mesh connectivity and allow direct merging of triangulations
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Computer Graphics I.3.5 Computational Geometry and Object Modelling Geometric algorithms languages and systems; merging algorithms; regular triangulations; triangulations; weighted Delaunay triangulations

Document Type: Research Article

Publication date: September 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more