Skip to main content
padlock icon - secure page this page is secure

Evaluation of cellular adhesion and organization in different microporous polymeric scaffolds

Buy Article:

$59.00 + tax (Refund Policy)

The lack of prediction accuracy during drug development and screening risks complications during human trials, such as drug‐induced liver injury (DILI), and has led to a demand for robust, human cell‐based, in vitro assays for drug discovery. Microporous polymer‐based scaffolds offer an alternative to the gold standard flat tissue culture plastic (2D TCPS) and other 3D cell culture platforms as the porous material entraps cells, making it advantageous for automated liquid handlers and high‐throughput screening (HTS). In this study, we optimized the surface treatment, pore size, and choice of scaffold material with respect to cellular adhesion, tissue organization, and expression of complex physiologically relevant (CPR) outcomes such as the presence of bile canaliculi‐like structures. Poly‐l‐lysine and fibronectin (FN) coatings have been shown to encourage cell attachment to the underlying substrate. Treatment of the scaffold surface with NaOH followed with a coating of FN improved cell attachment and penetration into pores. Of the two pore sizes we investigated (A: 104 ± 4 μm; B: 175 ± 6 μm), the larger pore size better promoted cell penetration while limiting tissue growth from reaching the hypoxia threshold. Finally, polystyrene (PS) proved to be conducive to cell growth, penetration into the scaffold, and yielded CPR outcomes while being a cost‐effective choice for HTS applications. These observations provide a foundation for optimizing microporous polymer‐based scaffolds suitable for drug discovery. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:505–514, 2018
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 3D culture; HTS; cell‐based assay; hepatic; scaffold

Document Type: Research Article

Publication date: March 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more