Skip to main content
padlock icon - secure page this page is secure

Moving through three‐dimensional phase diagrams of monoclonal antibodies

Buy Article:

$59.00 + tax (Refund Policy)

Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three‐dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1103–1113, 2014
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: high‐throughput screening; protein phase behavior, phase diagram, monoclonal antibody, crystallization

Document Type: Research Article

Publication date: September 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more