Skip to main content
padlock icon - secure page this page is secure

Sustained Growth of Explants from Mediterranean Sponge Crambe crambe Cultured In Vitro with Enriched RPMI 1640

Buy Article:

$59.00 + tax (Refund Policy)

Marine sponges are potential sources of many unique metabolites, including cytotoxic and anticancer compounds. Natural sponge populations are insufficient or inaccessible for producing commercial quantities of metabolites of interest. It is commonly accepted that tissue (fragments, explants, and primmorphs) and in vitro cell cultivation show great potential. However, there is little knowledge of the nutritional requirements of marine sponges to carry out efficient and sustained in vitro culture and progress has been slow. In marine invertebrate fila many unsuccessful attempts have been made with in vitro cultures using typical commercial animal cell media based on sources of dissolved organic carbon (DOC) (e.g., DMEM, RPMI, M199, L‐15, etc.). One of the reasons for this failure is the use of hardly identifiable growth promoters, based on terrestrial animal sera. An alternative is the use of extracts from marine animals, since they may contain nutrients necessary for growth. In this work we have cultivated in vitro explants of the encrusting marine sponge Crambe crambe. It is one of the most abundant sponges on the Mediterranean coastline and also possesses an array of potentially active metabolites (crambines and crambescidins). Initially a new approach was developed in order to show consumption of DOC by explants. Thus, different initial DOC concentrations (300, 400, 700 and 1200 mg DOC L−1) were assayed. Consumption was evident in all four assays and was more marked in the first 6 h. The DOC assimilation data were adjusted to an empirical model widely used for uptake kinetics of organic dissolved compounds in marine invertebrates. Second, a protocol was established to cultivate explants in vitro. Different medium formulations based on RPMI 1640 commercial medium enriched with amino acids and inorganic salts to emulate seawater salinity were assayed. The enrichment of this medium with an Octopusaqueous extract in the proportions of 10% and 20% (v/v) resulted in an evident sustained long‐term growth of C. crambe explants. This growth enhancement produced high metabolic activity in the explants, as is confirmed by the high ammonium and lactate content in the medium a few days after its renewal and by the consumption of glucose. The lactate accumulation increased with the size and age of explants. Prior to these experiments, we successfully developed a robust new alternative method, based on digital image treatment, for accurate determination of the explant apparent volume as growth measure.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Chemical Engineering, University of Almería, 04120 Almería, Spain

Publication date: January 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more