Skip to main content
padlock icon - secure page this page is secure

Optimization of intestinal microsomal preparation in the rat: A systematic approach to assess the influence of various methodologies on metabolic activity and scaling factors

Buy Article:

$47.00 + tax (Refund Policy)

The metabolic capacity of the intestine and its importance as the initial barrier to systemic exposure can lead to underestimation of first‐pass, and thus overestimation of oral bioavailability. However, the in vitro tools informing estimates of in vivo intestinal metabolism are limited by the complexity of the in vitro matrix preparation and uncertainty with the scaling factors for in vitro to in vivo extrapolation. A number of methods currently exist in the literature for the preparation of intestinal microsomes; however, the impact of key steps in the preparation procedure has not been critically assessed. In the current study, changes in enterocyte isolation, the impact of buffer constituents heparin and glycerol, as well as sonication as a direct method of homogenization were assessed systematically. Furthermore, fresh vs. frozen tissue samples and the impact of microsome freeze thawing was assessed. The rat intestinal microsomes were characterized for CYP content as well as metabolic activity using testosterone and 4‐nitropheonol as probes for CYP and UGT activity, respectively. Comparisons in metabolic activity and scaled unbound intestinal intrinsic clearance (CL intu,gut) were made to commercially available microsomes using 25 drugs with a diverse range of metabolic pathways and intestinal metabolic stabilities. An optimal, robust and reproducible microsomal preparation method for investigation of intestinal metabolism is proposed. The importance of characterization of the in vitro matrix and the potential impact of intestinal scaling factors on the in vitro–in vivo extrapolation of F G needs to be investigated further. © 2017 The Authors Biopharmaceutics & Drug Disposition Published by John Wiley & Sons Ltd.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: in vitro–in vivo extrapolation; intestinal metabolism; scaling factors

Document Type: Research Article

Publication date: 01 April 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more