Skip to main content
padlock icon - secure page this page is secure

Identification and characterization of in vitro and in vivo metabolites of steroidal alkaloid veratramine

Buy Article:

$47.00 + tax (Refund Policy)

Veratramine, a steroidal alkaloid originating from Veratrum nigrum L., has demonstrated distinct anti‐tumor and anti‐hypertension effects, however, its metabolism has rarely been explored. The objective of the current study was to provide a comprehensive investigation of its metabolic pathways. The in vitro metabolic profiles of veratramine were evaluated by incubating it with liver microsomes and cytosols. The in vivo metabolic profiles in plasma, bile, urine and feces were monitored by UPLC‐MS/MS after oral (20 mg/kg) and i.v. (50 µg/kg) administration in rats. Meanwhile, related P450s inhibitors and recombinant P450s and SULTs were used to identify the isozymes responsible for its metabolism. Eleven metabolites of veratramine, including seven hydroxylated, two sulfated and two glucuronidated metabolites, were characterized. Unlike most alkaloids, the major reactive sites of veratramine were on ring A and B instead of on the amine moiety. CYP2D6 was the major isozyme mediating hydroxylation, and substrate inhibition was observed with a V max, K i and Cl int of 2.05 ± 0.53 nmol/min/mg, 33.08 ± 10.13 µ m and 13.58 ± 1.27 µL/min/mg. SULT2A1, with K m, V max and Cl int values of 19.37 ± 0.87 µ m, 1.51 ± 0.02 nmol/min/mg and 78.19 ± 8.57 µL/min/mg, was identified as the major isozyme contributing to its sulfation. In conclusion, CYP2D6 and SULT2A1 mediating hydroxylation and sulfation were identified as the major biotransformation for veratramine. Copyright © 2015 John Wiley & Sons, Ltd.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: CYP2D6; SULT2A1; hydroxylation; sulfation; veratramine

Document Type: Research Article

Publication date: July 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more