Skip to main content
padlock icon - secure page this page is secure

Crystal structures, dynamics and functional implications of molybdenum‐cofactor biosynthesis protein MogA from two thermophilic organisms

Buy Article:

$52.00 + tax (Refund Policy)

Molybdenum‐cofactor (Moco) biosynthesis is an evolutionarily conserved pathway in almost all kingdoms of life, including humans. Two proteins, MogA and MoeA, catalyze the last step of this pathway in bacteria, whereas a single two‐domain protein carries out catalysis in eukaryotes. Here, three crystal structures of the Moco‐biosynthesis protein MogA from the two thermophilic organisms Thermus thermophilus (TtMogA; 1.64 Å resolution, space group P21) and Aquifex aeolicus (AaMogA; 1.70 Å resolution, space group P21 and 1.90 Å resolution, space group P1) have been determined. The functional roles and the residues involved in oligomerization of the protein molecules have been identified based on a comparative analysis of these structures with those of homologous proteins. Furthermore, functional roles have been proposed for the N‐ and C‐terminal residues. In addition, a possible protein–protein complex of MogA and MoeA has been proposed and the residues involved in protein–protein interactions are discussed. Several invariant water molecules and those present at the subunit interfaces have been identified and their possible structural and/or functional roles are described in brief. In addition, molecular‐dynamics and docking studies with several small molecules (including the substrate and the product) have been carried out in order to estimate their binding affinities towards AaMogA and TtMogA. The results obtained are further compared with those obtained for homologous eukaryotic proteins.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: MogA; molybdenum‐cofactor biosynthesis proteins

Document Type: Research Article

Publication date: January 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more