Skip to main content
padlock icon - secure page this page is secure

Functionally Driven Modulation of Sarcomeric Structure and Membrane Systems in the Fast Muscles of a Copepod (Gaussia princeps)

Buy Article:

$52.00 + tax (Refund Policy)

Muscles of the mesopelagic copepod Gaussia princeps (Arthropoda, Crustacea, Calanoida) are responsible for repetitive movements of feeding and swimming appendages that are too fast to be followed by eye. This article provides a comparative functional and ultrastructural description of five muscles that have different contraction speeds and are located within different anatomical sites. All are very fast, as indicated by a thick:thin filament ratio of 3:1 and sarcomere lengths that vary between 1 and 3 μm. Measured lengths of thin and thick filaments indicate classification of the muscles into three distinct groups (short, medium, and long) and predict a difference in speed of up to threefold between fibers with the shortest and longest sarcomeres. Indeed, the kicking movement of the posterior legs (with the shortest sarcomere length) is approximately threefold faster than the simultaneous back‐folding of the antennae (with the longest length). Thus, a specific relationship between speed of movement and sarcomere length is established, and we can use the latter to predict the former. Regulatory systems of contraction (sarcoplasmic reticulum [SR] and transverse [T] tubules) match the different contractile properties, varying in frequency of distribution and overall content in parallel to sarcomere variations. All muscles from appendages and body musculature show a unique disposition of contractile material, SR, and T tubules found only in copepod muscles; muscle filaments are grouped in large supermyofibrils that are riddled with frequent cylindrical shafts containing SR and T tubules. This arrangement insures a high spatial frequency of regulatory components. Anat Rec, 301:2164–2176, 2018. © 2018 Wiley Periodicals, Inc.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: copepod; muscle; sarcomeres

Document Type: Research Article

Publication date: December 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more