Skip to main content
padlock icon - secure page this page is secure

In vitro antimicrobial and antioxidant evaluation of rare earth metal Schiff base complexes derived from threonine

Buy Article:

$52.00 + tax (Refund Policy)

Six novel Ln(III) Schiff base complexes were synthesized using rare earth metals with threonine and 5‐bromosalicylaldehyde, namely Pr(III), Sm(III), Gd(III), Tb(III), Er(III) and Yb(III) Schiff bases. These complexes were characterized using elemental analysis, molar conductivity, Fourier transform infrared and UV–visible spectroscopies, and thermogravimetry–differential thermal analysis. The general formula of the complexes is [Ln(L)(NO3)2(H2O)].NO3 (L = Schiff base ligand). The spectroscopic data reveal that the Schiff base ligand behaves as a tridentate ligand with ONO donor atoms sequencing towards the central metal ion. An investigation of fluorescence properties of the Sm(III), Er(III) and Tb(III) complexes shows that the Ln(III) ions can be sensitized efficiently by the ligand to some extent. Antimicrobial activity testing indicates that all six complexes exhibit antibacterial and antifungal ability against microbes with broad antimicrobial spectra. In addition, the antioxidant properties of the complexes were also screened. Copyright © 2014 John Wiley & Sons, Ltd. Six novel Ln(III) Schiff base complexes were synthesized, characterized and tested for their antimicrobial activity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Ln(III) Schiff base complexes; Schiff base; amino acid; antimicrobial screening; antioxidant study

Document Type: Research Article

Publication date: February 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more