Skip to main content
padlock icon - secure page this page is secure

APPROXIMATING VOLATILITIES BY ASYMMETRIC POWER GARCH FUNCTIONS

Buy Article:

$52.00 + tax (Refund Policy)

Summary

ARCH/GARCH representations of financial series usually attempt to model the serial correlation structure of squared returns. Although it is undoubtedly true that squared returns are correlated, there is increasing empirical evidence of stronger correlation in the absolute returns than in squared returns. Rather than assuming an explicit form for volatility, we adopt an approximation approach; we approximate the th power of volatility by an asymmetric GARCH function with the power index  chosen so that the approximation is optimum. Asymptotic normality is established for both the quasi-maximum likelihood estimator (qMLE) and the least absolute deviations estimator (LADE) in our approximation setting. A consequence of our approach is a relaxation of the usual stationarity condition for GARCH models. In an application to real financial datasets, the estimated values for  are found to be close to one, consistent with the stylized fact that the strongest autocorrelation is found in the absolute returns. A simulation study illustrates that the qMLE is inefficient for models with heavy-tailed errors, whereas the LADE is more robust.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Taylor effect; autoregressive conditional heteroscedasticity; financial returns; least absolute deviation estimation; leverage effects; quasi-maximum likelihood estimation

Document Type: Research Article

Publication date: June 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more