Skip to main content
padlock icon - secure page this page is secure

A note on the correlation structure of transformed Gaussian random fields

Buy Article:

$52.00 + tax (Refund Policy)


Transformed Gaussian random fields can be used to model continuous time series and spatial data when the Gaussian assumption is not appropriate. The main features of these random fields are specified in a transformed scale, while for modelling and parameter interpretation it is useful to establish connections between these features and those of the random field in the original scale. This paper provides evidence that for many ‘normalizing’ transformations the correlation function of a transformed Gaussian random field is not very dependent on the transformation that is used. Hence many commonly used transformations of correlated data have little effect on the original correlation structure. The property is shown to hold for some kinds of transformed Gaussian random fields, and a statistical explanation based on the concept of parameter orthogonality is provided. The property is also illustrated using two spatial datasets and several ‘normalizing’ transformations. Some consequences of this property for modelling and inference are also discussed.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Box—Cox family; correlation function; orthogonal parameters; recursive-type function; spatial data

Document Type: Research Article

Affiliations: University of Arkansas

Publication date: September 1, 2003

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more