Skip to main content
padlock icon - secure page this page is secure

Bayesian variable selection in logistic regression: predicting company earnings direction

Buy Article:

$52.00 + tax (Refund Policy)

This paper presents a Bayesian technique for the estimation of a logistic regression model including variable selection. As in Ou & Penman (1989), the model is used to predict the direction of company earnings, one year ahead, from a large set of accounting variables from financial statements. To estimate the model, the paper presents a Markov chain Monte Carlo sampling scheme that includes the variable selection technique of Smith & Kohn (1996) and the non-Gaussian estimation method of Mira & Tierney (2001). The technique is applied to data for companies in the United States and Australia. The results obtained compare favourably to the technique used by Ou & Penman (1989) for both regions.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: slice sampler; stepwise regression

Document Type: Original Article

Affiliations: University of Newcastle and University of Technology, Sydney

Publication date: June 1, 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more