Skip to main content
padlock icon - secure page this page is secure

Improved Geometric Model of Extensional Fault‐bend Folding

Buy Article:

$52.00 + tax (Refund Policy)

Extensional fault‐bend folds, also called rollovers, are one of the most common structures in extensional settings. Numerous studies have shown that oblique simple shear is the most appropriate mechanism for quantitative modeling of geometric relations between normal faults and the strata in their hanging walls. However, the oblique simple shear has a rather serious issue derived from the shear direction, particularly above convex bends. We use geometric and experimental methods to study the deformation of extensional fault–bend folds on convex bends. The results indicate that whether the fault bends are concave or convex, the shear direction of the hanging wall dips toward the main fault. On this basis, we improve the previous geometric model by changing the shear direction above the convex bends. To illustrate basin history, our model highlights the importance of the outer limit of folding instead of the growth axial. Moreover, we propose a new expression for the expansion index that is applicable to the condition of no deposition on the footwall. This model is validated by modeling a natural structure of the East China Sea Basin.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: East China Sea Basin; expansion index; extensional fault–bend folds; outer limit of folding; shear direction

Document Type: Research Article

Publication date: December 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more