Skip to main content
padlock icon - secure page this page is secure

Automatic classification of weld defects in radiographic images

Buy Article:

$17.00 + tax (Refund Policy)

There are two problems that affect the accuracy of defect classification for automated radiographic NDT. One is the poor generalisation of the classification method led by a small training sample or an improper classifier, and the other is the poor separability of the feature group. To solve the former, we propose a method based on the direct multiclass support vector machine (DMSVM) to classify the defect, which has good generalisation under the circumstances of a small training set. To tackle the latter, we suggest four new features (three of them are based on the defect region) to characterise the defect, which greatly improve the separability of the feature group. Three classifiers (one-versus-rest SVM, one-versus-one SVM and MLP neuron network) and a group of feathers are used to compare with the classifier and the feature group we proposed. The bootstrap estimate is used to estimate their performances. The experimental results demonstrate that the bootstrap accuracy estimate of DMSVM is 94.25, which is higher than that achieved by the three compared classifiers. Moreover, the separability of the suggested feature group is equivalent to that of the counterpart but with a two-thirds size, and the computation time is cut by 22.17.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: Features; classification; defects; direct multiclass SVM

Document Type: Research Article

Affiliations: 1 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. jack4381gmail.com.

Publication date: 01 March 2010

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more