Skip to main content
padlock icon - secure page this page is secure

Identification of Potential Targets for Thylakoid Oxidoreductase AtVKOR/LTO1 in Chloroplasts

Buy Article:

$68.00 + tax (Refund Policy)

The Arabidopsis thylakoid membrane bimodular oxidoreductase, AtVKOR, could catalyze disulfide bond formation, and its direct functional domain (thioredoxin-like domain) is located in the thylakoid lumen according to the topological structure. Many proteins have one or several disulfide bonds in the thylakoid lumen, including photosynthetic chain components. A yeast two-hybrid assay was used to identify potential targets for the AtVKOR, and a Trx-like domain was constructed into a BD vector as bait. Twenty-two thylakoid lumenal proteins with disulfides were selected. The cDNAs encoding these proteins were constructed into an AD vector. Eight proteins were identified from the hybrid results to interact with AtVKOR, including HCF164, cytochrome c6A, violaxanthin deepoxidase, embryo sac development arrest 3 protein (EDA3), two members pentapeptide repeat proteins (TL17 and TL20.3), and two FK-506 binding proteins (FKBP13 and FKBP20-2). The BIACORE system was used to demonstrate that the recombinant HCF164 and Trx-like domain of AtVKOR could interact directly in vitro. The KD value for binding HCF164 to AtVKOR was calculated as 2.5×10-6 M. These results suggest that AtVKOR can interact with partial thylakoid lumenal proteins and indicates AtVKOR plays an important role in regulating the thylakoid lumen redox.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: AtVKOR/LTO1; HCF164; disulfide bond; protein-protein interaction

Document Type: Research Article

Publication date: March 1, 2015

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more