Skip to main content
padlock icon - secure page this page is secure

Predicting Viral Protein Subcellular Localization with Chou's Pseudo Amino Acid Composition and Imbalance-Weighted Multi-Label K-Nearest Neighbor Algorithm

Buy Article:

$68.00 + tax (Refund Policy)

Machine learning is a kind of reliable technology for automated subcellular localization of viral proteins within a host cell or virus-infected cell. One challenge is that the viral protein samples are not only with multiple location sites, but also class-imbalanced. The imbalanced dataset often decreases the prediction performance. In order to accomplish this challenge, this paper proposes a novel approach named imbalance-weighted multi-label K-nearest neighbor to predict viral protein subcellular location with multiple sites. The experimental results by jackknife test indicate that the presented algorithm achieves a better performance than the existing methods and has great potentials in protein science.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Class-imbalance; K-nearest neighbor; multi-label learning; pseudo amino acid composition; subcellular localization

Document Type: Research Article

Publication date: November 1, 2012

More about this publication?
  • Protein & Peptide Letters publishes short papers in all important aspects of protein and peptide research, including structural studies, recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, drug design etc. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallisation, and preliminary structure determinations of biologically important proteins are acceptable. Purely theoretical papers are also acceptable provided they provide new insight into the principles of protein/peptide structure and function.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more