Skip to main content
padlock icon - secure page this page is secure

Biological Effect of Glycosyl-Oxadiazolinethione and Glycosyl-sulfanyloxadiazole Derivatives through their in vitro Inhibition of Glycosidases from Bacteria and Normal or Diabetic Rats

Buy Article:

$63.00 + tax (Refund Policy)

The inhibition of glycosidases from bacteria and the liver of normal and diabetic rats by 2-(tetra-O-acetyl-β-Dglucopyranosylsulfanyl)- 5-(1-benzyl-1H-indol-2-yl)-1,3,4-oxadiazole BnM-3B; 3-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)- 5-(1H-indol-2-yl)-1,3,4-oxadiazole- 2(3H)-thione MTB-4A; 3-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-Dglucopyranosyl)- 5-(1-benzyl-1H-indol-2-yl)-1,3,4-oxadiazole-2(3H)-thione BnN-5A has been investigated. In vitro treatment of hepatic α-amylase and β-glucuronidase from control and streptozotocin-induced diabetic rats by S- and Nglycosyl analogues from oxadiazolinethione derivatives exhibited a significant dose-dependent decrease on the specific activity of both α-amylase and β-glucuronidase. Moreover, these compounds also exhibited a significant decrease on the specific activity of α-amylase and α-glucosidase produced by Bacillus subtilis AH. The observed IC50 values of these compounds are much lower than that of ethanolamines, higher for α-glucosidase than α-amylase from bacteria and significantly lower for hepatic α-amylase and β-glucuronidase from diabetic rats. The obtained results suggest that these compounds are good inhibitors that act on glycosidases from bacteria and normal / diabetic rats in different mechanisms.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Enzyme inhibitors; ethanolamines; glycosidases; glycosyl-sulfanyl-oxadiazole; oxadiazolinethione

Document Type: Research Article

Publication date: 01 March 2015

More about this publication?
  • Letters in Drug Design & Discovery publishes original letters on all areas of rational drug design and discovery including medicinal chemistry, in-silico drug design, combinatorial chemistry, high-throughput screening, drug targets, and structure-activity relationships. The emphasis will be on publishing quality papers very rapidly. Letters will be processed rapidly by taking full advantage of Internet technology for both the submission and review of manuscripts. The journal is essential reading to all pharmaceutical scientists involved in research in drug design and discovery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more