Skip to main content

Lipoic Acid: A Novel Therapeutic Approach for Multiple Sclerosis and Other Chronic Inflammatory Diseases of the CNS

Buy Article:

Your trusted access to this article has expired.

$68.00 + tax (Refund Policy)

The naturally occurring antioxidant lipoic acid (LA) was first described as an essential cofactor for the conversion of pyruvate to Acetyl-CoA, a critical step in respiration. LA is now recognized as a compound that has many biological functions. Along with its reduced form dihydrolipoic acid (DHLA), LA reduces and recycles cellular antioxidants such as glutathione, and chelates zinc, copper and other transition metal ions in addition to heavy metals. LA can also act as a scavenger of reactive oxygen and nitrogen species. By acting as an insulin mimetic agent, LA stimulates glucose uptake in many different cell types and can also modulate insulin signaling. The p38 and ERK MAP kinase pathways, AKT and NFκB are all regulated by LA. In addition, LA activates the prostaglandin EP2 and EP4 receptors to stimulate the production of the small molecule cyclic adenosine 5' monophosphate (cAMP). These diverse actions suggest that LA may be therapeutically effective in treating oxidative stress associated diseases. This review discusses the known biochemical properties of LA, its antioxidant properties, its ability to modulate signal transduction pathways, and the recent progress made in the utilization of LA as a therapeutic alternative for multiple sclerosis, Alzheimer's disease and diabetic neuropathy.





Keywords: Lipoic acid; alzheimer's disease; diabetic neuropathy; dihydrolipoic acid; multiple sclerosis; oxidative stress; signal transduction; thioctic acid

Document Type: Research Article

Publication date: 01 June 2008

More about this publication?
  • This journal is devoted to timely reviews of experimental and clinical studies in the field of endocrine, metabolic, and immune disorders. Specific emphasis is placed on humoral and cellular targets for natural, synthetic, and genetically engineered drugs that enhance or impair endocrine, metabolic, and immune parameters and functions. Topics related to the neuroendocrine-immune axis are given special emphasis in view of the growing interest in stress-related, inflammatory, autoimmune, and degenerative disorders.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content