Skip to main content
padlock icon - secure page this page is secure

Role of Nitrosative Stress and Poly(ADP-ribose) Polymerase Activation in Diabetic Vascular Dysfunction

Buy Article:

$68.00 + tax (Refund Policy)

Complications of diabetes rather than the primary disease itself pose the most challenging aspects of diabetic patient management. Diabetic vascular dysfunction represents a problem of great clinical importance underlying the development of many of the complications including retinopathy, neuropathy and the increased risk of stroke, hypertension and myocardial infarction. Hyperglycaemia stimulates many cellular pathways, which result in oxidative stress, including increased production of advanced glycosylated end products, protein kinase C activation, and polyol pathway flux. Endothelial cells produce nitric oxide constitutively to regulate normal vascular tone; the combination of this nitric oxide with the hyperglycaemia-induced superoxide formation results in the production of reactive nitrogen species such as peroxynitrite. This nitrosative stress results in many damaging cellular effects, but it is these effects on DNA, which are the most damaging to the cell function; nitrosative stress induces DNA single stand breaks and leads to over-activation of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP). PARP activation contributes to endothelial cell dysfunction and appears to be the central mediator in all the mechanisms by which hyperglycaemia-induces diabetic vascular dysfunction. This review focuses on the mechanism by which hyperglycaemia induces nitrosative stress and the role PARP activation plays in diabetic vascular dysfunction.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: diabetes; endothelial; nitric oxide; peroxynitrite; poly (adp-ribose) polymerase; superoxide; vascular

Document Type: Review Article

Affiliations: School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, UK.

Publication date: July 1, 2005

More about this publication?
  • Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials.

    Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units). Current Vascular Pharmacology will publish reviews to update all those concerned with the treatment of vascular disease. For example, reviews commenting on recently published trials or new drugs will be included. In addition to clinically relevant topics we will consider 'research-based' reviews dealing with future developments and potential drug targets. Therefore, another function of Current Vascular Pharmacology is to bridge the gap between clinical practice and ongoing research.

    Debates will also be encouraged in the correspondence section of this journal.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more