Skip to main content
padlock icon - secure page this page is secure

Zinc Complexes Developed as Metallopharmaceutics for Treating Diabetes Mellitus based on the Bio-Medicinal Inorganic Chemistry

Buy Article:

$68.00 + tax (Refund Policy)

Biological trace metals such as iron, zinc, copper, and manganese are essential to life and health of humans, and the success of platinum drugs in the cancer chemotherapy has rapidly grown interest in developing inorganic pharmaceutical agents in medicinal chemistry, that is, medicinal inorganic chemistry, using essential elements and other biological trace metals. Transition metal complexes with unique chemical structures may be useful alternatives to the drugs available to address some of the incurable diseases. In this review, we emphasize that metal complexes are an expanding of interest in the research field of treatment of diabetes mellitus. Especially, orally active anti-diabetic and anti-metabolic syndrome zinc complexes have been developed and progressed since the discovery in 2001, where several highly potent anti-diabetic zinc complexes with different coordination structures have quite recently been disclosed, using experimental diabetic animals. In all of the complexes discussed, zinc is found to be biologically active and function by interacting with some target proteins related with diabetes mellitus. The design and screening of zinc complexes with higher activity is not efficient without consideration of the translational research. For the development of a clinically useful metallopharmaceutics, the research of zinc complexes on the long-term toxicity including side effects, clear-cut evidence of target molecule for the in vivo pharmacological action, and good pharmacokinetic property are essential in the current and future studies.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Anti-diabetic zinc complexes; Biological trace metals; anti-metabolic syndrome zinc complexes; bio-coordination chemistry; bioinorganic chemistry; diabetes mellitus; hydrolysis; insulin signaling; medicinal inorganic chemistry; metallopharmaceutics; orally active anti-diabetic; platinum drugs; target molecule

Document Type: Research Article

Publication date: February 1, 2012

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more