Skip to main content
padlock icon - secure page this page is secure

Open Access Mechanistic Considerations on the Development of Lung Edema: Vascular, Perivascular and Molecular Aspects from Early Stage to Tissue and Vascular Remodeling Stage

Download Article:
 Download
(PDF 726.2 kb)
 
The purpose of this article is double, to review the mechanisms allowing to control the volume of the extravascular lung water and then to trace a pathophysiological basis for the development of lung edema when such control is lost. Efficient gas diffusion in the air-blood barrier is guaranteed by an extremely low volume of extravascular water, assuring a minimum barrier thickness, and by a perfect matching between alveolar perfusion and ventilation. Low microvascular permeability and dynamic remodeling of the interstitial matrix and of microvessels maintain this equilibrium. Lung cells play a crucial role by acting as early sensors of the dysregulation of lung water balance. When capillary filtration increases due to an increase in microvascular permeability (e.g as in hypoxia), interstitial pressure rises substantially due to the rigidity of the interstitial compartment. This triggers mechano-transduction in lung cells through the expression of lipid microdomains that represent specific signaling platforms. Severe edema occurs as a result of yielding/fragmentation of important link proteins (matrix proteoglycans) to excessive tissue stress. The reparative matrix remodeling is stimulated by FGFβ (Fibroblast Growth Factor β ) and KGF (Keratinocyte Growth Factor). In edematous regions the increase in tissue pressure may cause compression of microvessels and associated marked precapillary vasoconstriction, thus resulting in an increase in pulmonary vascular resistances. Vascular remodeling decreases blood flow in edematous regions and favors blood redistribution to normal regions. Pulmonary hypertension is common to all conditions of severe lung edema and is proportional to the extension of the edematous process. In conclusion, it appears tempting to think of pulmonary hypertension as the consequence, rather than the cause, of lung edema which would lead to hypothesize that an excessive fibro-proliferative process in the lung might be interpreted as the response to a chronic condition of high microvascular permeability.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Air-blood barrier; edema; interstitial matrix; matrix remodelling; microvascular permeability; pulmonary hypertension; vasomotion

Document Type: Research Article

Publication date: April 1, 2012

More about this publication?
  • Current Respiratory Medicine Reviews publishes frontier reviews on all the latest advances on respiratory diseases and its related areas e.g. pharmacology, pathogenesis, clinical care, and therapy. The journal's aim is to publish the highest quality review articles dedicated to clinical research in the field. The journal is essential reading for all researchers and clinicians in respiratory medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more