Skip to main content
padlock icon - secure page this page is secure

Membrane Interactive α-Helices in GPCRs as a Novel Drug Target

Buy Article:

$68.00 + tax (Refund Policy)

G-Protein Coupled Receptors (GPCRs) are one of the most important targets for pharmaceutical drug design. Over the past 30 years, mounting evidence has suggested the existence of homo and hetero dimers or higher-order complexes (oligomers) that are involved in signal transduction and some diseases. The number of reports describing GPCR oligomerization has increased, and in 2003, the organization of mouse rhodopsin into two-dimensional arrays of dimers was determined by an atomic force microscopic analysis. The analysis of the mouse rhodopsin complex has enabled us to discuss the oligomerization based on structural data. Although many unsolved problems still remains, the idea that GPCRs directly interact to form oligomers has been gradually accepted. One of the recent findings in the GPCR investigations is the clarification of the mechanisms of GPCR oligomerization at a molecular level.

Most of these studies have suggested the importance of transmembrane α-helices for GPCR oligomerization. In this review, we will first summarize the importance of GPCR oligomerization and the functions of GPCRs. Then, we will explain the involvement of transmembrane α-helices in the oligomerization and a drug design strategy that targets these regions for GPCR oligomerization. Considering the current drug design methods, which are based on the modification of the protein-protein interactions of soluble regions of proteins, a “peptide mimic approach” that targets the transmembrane α-helices constituting the interfaces would be promising in drug discovery for GPCR oligomerization. For that purpose, we must know the positions of the interfaces. However, problems specific to membrane proteins have made it difficult to identify the positions of the interfaces experimentally. Therefore, information about the interfaces predicted by bioinformatics approaches is valuable. At the end of this review, several bioinformatics approaches toward interface prediction for oligomerization are introduced. The benefits and the pitfalls of these approaches are also discussed.



No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: G-protein coupled receptors; bioinformatics; interface prediction; oligomerization; protein-protein interaction (PPI); signal transduction; transmembrane α-helices

Document Type: Research Article

Affiliations: Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.

Publication date: December 1, 2006

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more