
Silybin B and Cianidanol Inhibit Mpro and Spike Protein of SARS-CoV-2: Evidence from in silico Molecular Docking Studies
Background: The main proteases (Mpro) and Spike Proteins (SP) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) play a major role in viral infection development by producing several non-structural proteins (nsPs) and penetrating the host cells, respectively. In this study,
the potential of in silico molecular docking-based drug repositioning approach was exploited for identifying the inhibitors of Mpro and SP of SARS-CoV-2.
Methods: A total of 196 compounds, including various US-FDA-approved drugs, vitamins, and their analogs, were docked with Mpro (PDB IDs: 6YB7 and 6Y84), and the top six ligands were further tested for ADME properties, followed by docking with SP (PDB IDs: 6LXT and 6W41).
Results: Out of 196 compounds, binding energy (DE) of Silybin B (6YB7: DE: -11.20 kcal/mol; 6Y84: DE: - 10.18 kcal/mol; 6LXT: DE: -10.47 kcal/mol; 6W41: DE: -10.96 kcal/mol) and Cianidanol (6YB7: DE: -8.85 kcal/mol; 6LXT: DE: -9.36 kcal/mol; 6Y84: DE: -10.02 kcal/mol; 6W41: DE: -9.52 kcal/mol) demonstrated better binding and ADME properties compared with the currently endeavored drugs like Hydroxychloroquine and Lopinavir. Additionally, Elliptinone, Diospyirin, SCHEMBL94263, and Fiboflavin have shown encouraging results. Fiboflavin, an immunity booster, was found to inhibit both the Mpro and spike protein of SARSCoV- 2. It was observed that amino acid residues MET6, ALA7, PHE8, PRO9, ASP295, GLY302, VAL303, and THR304 play significant roles in protein-ligand interactions through hydrogen bonds and Vander Waals forces.
Conclusion: Silybin B and Cianidanol showed excellent binding and ADME properties compared with the currently endeavored drugs and can be exploited as therapeutic options against SARS-CoV-2 infection after experimental validation and clinical trials.
Methods: A total of 196 compounds, including various US-FDA-approved drugs, vitamins, and their analogs, were docked with Mpro (PDB IDs: 6YB7 and 6Y84), and the top six ligands were further tested for ADME properties, followed by docking with SP (PDB IDs: 6LXT and 6W41).
Results: Out of 196 compounds, binding energy (DE) of Silybin B (6YB7: DE: -11.20 kcal/mol; 6Y84: DE: - 10.18 kcal/mol; 6LXT: DE: -10.47 kcal/mol; 6W41: DE: -10.96 kcal/mol) and Cianidanol (6YB7: DE: -8.85 kcal/mol; 6LXT: DE: -9.36 kcal/mol; 6Y84: DE: -10.02 kcal/mol; 6W41: DE: -9.52 kcal/mol) demonstrated better binding and ADME properties compared with the currently endeavored drugs like Hydroxychloroquine and Lopinavir. Additionally, Elliptinone, Diospyirin, SCHEMBL94263, and Fiboflavin have shown encouraging results. Fiboflavin, an immunity booster, was found to inhibit both the Mpro and spike protein of SARSCoV- 2. It was observed that amino acid residues MET6, ALA7, PHE8, PRO9, ASP295, GLY302, VAL303, and THR304 play significant roles in protein-ligand interactions through hydrogen bonds and Vander Waals forces.
Conclusion: Silybin B and Cianidanol showed excellent binding and ADME properties compared with the currently endeavored drugs and can be exploited as therapeutic options against SARS-CoV-2 infection after experimental validation and clinical trials.
Keywords: COVID-19; Mpro; SARS-CoV-2; cianidanol; fiboflavin; silybin B; spike protein
Document Type: Research Article
Publication date: September 1, 2021
This article was made available online on March 3, 2021 as a Fast Track article with title: "Silybin B and Cianidanol Inhibit Mpro and Spike Protein of SARS-CoV-2: Evidence from in silico Molecular Docking Studies".
- Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism. - Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content