Skip to main content
padlock icon - secure page this page is secure

Targeting Schistosome Histone Modifying Enzymes for Drug Development

Buy Article:

$68.00 + tax (Refund Policy)

The histone modifying enzymes (HME) represent particularly promising targets for the development of alternatives to praziquantel, the only currently available drug to combat schistosomiasis. The inhibition of these enzymes frequently arrests the cell cycle or induces apoptosis in cancer cells, but not in normal cells and numerous HME inhibitors are under investigation as potential anticancer agents. The recent resolution of the genome sequences of Schistosoma mansoni and Schistosoma japonicum has allowed us to identify all the schistosome genes encoding histone acetyltransferases, deacetylases, methyltransferases and demethylases. We have chosen a strategy using phylogenetic screening with inhibitors of HME classes, screening of individual HME targets by both high-throughput and reasoned (in silico docking using resolved crystal structures) approaches in a project funded by the European Community, named SEtTReND (Schistosome Epigenetics: Targets, Regulation, New Drugs). The initial focus is on the class I histone deacetylase (HDAC) 8 since the comparison of the catalytic site of the schistosome and human enzymes shows crucial differences, rendering possible the development of inhibitors specific for SmHDAC8. However, phenotypic screening shows that inhibitors of all HME classes tested were able to induce apoptosis and death in parasites in vitro, indicating that other enzymes may prove to be viable targets.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: SEtTReND; Schistosoma mansoni; SmHDAC8; apoptosis; drug target; histone deacetylase; histone modifying enzyme; inhibitor; praziquantel; schistosome genes

Document Type: Research Article

Publication date: August 1, 2012

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more