Skip to main content
padlock icon - secure page this page is secure

Therapeutic Potential of Host Defense Peptides in Antibiotic-resistant Infections

Buy Article:

$68.00 + tax (Refund Policy)

The emergence of infections caused by multi-drug resistant (MDR) pathogens pose a major burden to modern healthcare. Exacerbating this issue is the substantial decline in development of new classes of antibiotics by pharmaceutical companies. This has led to renewed interest in the therapeutic potential of natural anti-infective agents such as host defense peptides (HDPs). The broad antimicrobial and immunomodulatory activities of HDPs and their synthetic derivatives, coupled with the fact that they do not readily induce microbial resistance, makes them extremely valuable leads in the development of new treatment strategies for MDR infections. This review examines our knowledge of the mechanisms behind multi-drug resistance as well as the properties of HDPs and their therapeutic potential, especially in the case of MDR infections. Challenges to their development as new therapeutics are also discussed.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Host-defense peptide; chemoattractant; endotoxin neutralization; immunity; immunomodulatory; infection; inflammation; multi-drug resistant bacteria; penicillin; therapeutic

Document Type: Research Article

Publication date: February 1, 2012

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more