Skip to main content
padlock icon - secure page this page is secure

Nitric Oxide-Derived Oxidants with a Focus on Peroxynitrite: Molecular Targets,Cellular Responses and Therapeutic Implications

Buy Article:

$68.00 + tax (Refund Policy)

Nitric oxide participates in a wide array of physiological processes, ranging from neurotransmission to precursor of cytotoxic effector molecules of the immune system. Although nitric oxide is a mildly reactive intermediary, it can act as a precursor of strong oxidants under pathological conditions associated with oxidative stress including cardiovascular, inflammatory and neurodegenerative disorders. Peroxynitrite, the reaction product of nitric oxide with superoxide radicals, emerges as one of the principal players of nitric oxidederived toxicity due to its facile formation and ability to react with several critical cellular targets including, thiols, proteins, lipids and DNA. The extent of “nitroxidative stress” is determined by several factors, including the concentration and exposure time to this reactive species or its derived radicals and by the ability of the cell to face the oxidative challenge by means of its antioxidant defenses. The inflicted biomolecular damage can result on minimal and reversible changes to cell and tissue physiology, to alteration in bioenergetics, disruption of DNA integrity, mitochondrial dysfunction and even cell death. Although dissecting the free radical chemistry pathways responsible of cell/tissue disturbance of oxidative signaling and promotion of oxidative damage arising from nitric oxide-derived oxidants in a biological context is a vast endeavor, is an ineludible task in order to generate a rational therapeutic approach to modulate nitroxidative stress. Several redox-based pharmacological strategies with a collection of compounds with varying mechanisms of action have been tested at the cellular, preclinical and even clinical levels, and some novel and promising developments are underway. This review deals with key kinetic and biochemical aspects of nitric oxide-derived oxidant formation and reactions in biological systems, emphasizing the current evidence at the biochemical, cell/tissue and animal/human levels that support a pathophysiological role for peroxynitrite and related species in human pathology. In addition, a selection of available pharmacological tools will be discussed as an effort to rationalize antioxidant and/or redox-based therapeutic interventions in disease models.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Nitric oxide; antioxidants; cell death; fibrinogen; free radicals; nitration; nitrotyrosine; oxidation; oxidative stress; peroxynitrite

Document Type: Research Article

Publication date: December 1, 2011

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more