Skip to main content
padlock icon - secure page this page is secure

Anti-Inflammatory Heat Shock Protein 70 Genes are Positively Associated with Human Survival

Buy Article:

$68.00 + tax (Refund Policy)

A positive relationship between stress tolerance and longevity has been observed in several model systems. That the same correlation is applicable in humans and that it may be open to experimental manipulation for extending human lifespan requires studies on association of stress genes with longevity. The involvement of heat shock protein 70 (Hsp70) in cellular maintenance and repair mechanisms, including its role as an anti-inflammatory protein, makes it a suitable candidate for studying such associations. We have studied the association of three single nucleotide polymorphisms, HSPA1A (-110A>C), HSPA1B (1267A>G), and HSPA1L (2437T>C), present in the three HSP70 genes, with human survival, in a cohort of individuals born in the year 1905. This population cohort is a part of the longitudinal study of Danish nonagenarians. Since DNA samples were already collected in 1998, this gave us the opportunity to perform survival analysis on these subjects. Haplotype relative risk, and genotype relative risk were calculated to measure the effects of haplotypes and genotypes on human survival in a sex-specific manner. A significant association of HSPA1A-AA (RR=3.864; p=0.016) and HSPA1B-AA (RR=2.764; p=0.039) genotypes with poor survival was observed in female subjects. Also the female carriers of haplotype G-C-T had longer survival than the non-carriers (HRR=0.550; p=0.015). On an average, female carriers of the G-C-T haplotype live about one year longer than non-carriers. This result corroborates our previous observations from heat shock response (HSR) study where we had shown that after heat stimulation, mononuclear cells from the carriers of genotype HSPA1L-TT had better HSR than cells with the HSPA1L-CC genotype.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: HSP70; HSR; aging; haplotype; longevity; polymorphisms; survival

Document Type: Research Article

Affiliations: FCMB ApS, Tysklandsvej 7, Vejle 7100, Denmark.

Publication date: March 1, 2010

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more