Role of Anti-Oxidants in Atherosclerosis: Epidemiological and Clinical Update
Low density lipoprotein (LDL) oxidative modification in the vascular wall seems to be a key factor in atherosclerosis development. Oxidised LDLs might recruit monocytes and favour their transformation into foam cells through a receptor-mediated intake (scavenger pathway). Moreover oxidised LDLs show cytotoxic potential which is probably responsible for endothelial cell damage and macrophage degeneration in the atherosclerotic human plaque.
Following the oxidation hypothesis of atherosclerosis the role of natural antioxidants, i.e. Vitamin C, Vitamin E and carotenoids, has been investigated in a large number of epidemiological, clinical and experimental studies. Animal studies indicate that dietary antioxidants may reduce atherosclerosis progression, and observational data in humans suggest that antioxidant vitamin ingestion is associated with reduced cardiovascular disease, but the results of randomised controlled trials are mainly disappointing. It has been suggested that natural antioxidants may be effective only in selected subgroups of patients with high levels of oxidative stress or depletion of natural antioxidant defence systems.
The favourable effects shown by some studies relating antioxidant dietary intake and cardiovascular disease, may have been exerted by other chemicals present in foods. Flavonoids are the ideal candidates, since they are plentiful in foods containing antioxidant vitamins (i.e. fruits and vegetables) and are potent antioxidants. Tea and wine, rich in flavonoids, seem to have beneficial effects on multiple mechanisms involved in atherosclerosis.
Future studies should probably select patients in a context of high-oxidative stress / low-antioxidant defence, to verify if antioxidants may really prove useful as therapeutic anti-atherosclerotic agents.
Following the oxidation hypothesis of atherosclerosis the role of natural antioxidants, i.e. Vitamin C, Vitamin E and carotenoids, has been investigated in a large number of epidemiological, clinical and experimental studies. Animal studies indicate that dietary antioxidants may reduce atherosclerosis progression, and observational data in humans suggest that antioxidant vitamin ingestion is associated with reduced cardiovascular disease, but the results of randomised controlled trials are mainly disappointing. It has been suggested that natural antioxidants may be effective only in selected subgroups of patients with high levels of oxidative stress or depletion of natural antioxidant defence systems.
The favourable effects shown by some studies relating antioxidant dietary intake and cardiovascular disease, may have been exerted by other chemicals present in foods. Flavonoids are the ideal candidates, since they are plentiful in foods containing antioxidant vitamins (i.e. fruits and vegetables) and are potent antioxidants. Tea and wine, rich in flavonoids, seem to have beneficial effects on multiple mechanisms involved in atherosclerosis.
Future studies should probably select patients in a context of high-oxidative stress / low-antioxidant defence, to verify if antioxidants may really prove useful as therapeutic anti-atherosclerotic agents.
Keywords: antioxidant vitamins; atherosclerosis; flavonoids; ldl-oxidation
Document Type: Review Article
Affiliations: Institute of Gerontology and Geriatrics, University of Perugia Medical School, Policlinico Monteluce, padiglione E , via Brunamonti , 06122, Perugia Italy.
Publication date: June 1, 2005
- Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism. - Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content