Skip to main content
padlock icon - secure page this page is secure

Studies on Coumarins and Coumarin-Related Compounds to Determine their Therapeutic Role in the Treatment of Cancer

Buy Article:

$68.00 + tax (Refund Policy)

The Benzopyrones are a group of compounds whose members include coumarins and flavonoids. Dietary exposure to benzopyrones is quite significant, as these compounds are found in vegetables, fruit, seeds, nuts, coffee, tea and wine. It is estimated that the average western diet contains approximately 1g / day of mixed benzopyrones. It is, therefore, not difficult to see why extensive research into their pharmacological and therapeutic properties is underway over many years. Coumarin is a natural substance that has shown anti-tumour activity in vivo, with the effect believed to be due to its metabolites (e.g. 7-hydroxycoumarin). This review is based on recent studies of coumarins and coumarin related compounds. Therefore, the focus will be on these relevant compounds and their therapeutic importance.

A recent study has shown that 7-hydroxycoumarin inhibits the release of Cyclin D1, which is overexpressed in many types of cancer. This knowledge may lead to its use in cancer therapy. Esculetin inhibits growth and cell cycle progression by inducing arrest of the G1 phase in HL-60 leukaemia cells, resulting from the inhibition of retinoblastoma protein phosphorylation. Recent studies investigating the potential of flavonoids as therapeutic agents have suggested they may have use in various therapeutic settings ranging from leukaemia treatment to the treatment of patients with HIV. Genistein is a well-known isoflavone and is a tyrosine kinase inhibitor. Studies have indicated that genistein elicits inhibitory effects on cell growth of various carcinoma cell-lines and may be a potential candidate for cancer therapy.

In our research, we have investigated the effects of coumarins and coumarin-related compounds on a panel of cell-lines. The most recent work involves two cell-lines, MCF-7 a breast carcinoma and A549 a lung carcinoma. Microtitre assays were performed along with real-time analysis of cell viability using a biosensor called the Cytosensor microphysiometer. These studies suggest that both genistein and esculetin exerted the most potent inhibitory effect on cell growth in comparison to the other two compounds.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 7-hydroxycoumarin; benzopyrones; coumarin; coumarin derivatives; esculetin; flavonoids; furanocoumarins; genistein; pyranocoumarins; warfarin

Document Type: Review Article

Affiliations: Applied Biochemistry Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.

Publication date: November 1, 2004

More about this publication?
  • Current Pharmaceutical Design publishes timely in-depth reviews covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area. A Guest Editor who is an acknowledged authority in a therapeutic field has solicits for each issue comprehensive and timely reviews from leading researchers in the pharmaceutical industry and academia.

    Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design, including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more