Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity
Background: In the last decade, there have been accumulating data that the use of medicinal plants could bring additional benefits to the supportive treatment of various diseases. Nigella sativa (N. sativa, family Ranunculaceae) is one of these plants that has attracted considerable
interest. The extracts and seeds of N. sativa and its active component thymoquinone have been studied extensively and the results suggest that N. sativa might carry some therapeutic potential for many diseases, including cancer.
Methods: The selection criteria for references were applied through Pubmed with “N. sativa and cancer”, “N. sativa and breast cancer”, “N. sativa and metastasis”, “N. sativa and cytotoxicity of natural killer cells”. The pathway analysis was performed using the PANTHER tool by using five randomly selected N. sativa affected genes (Cyclin D1, P53, p21 protein (Cdc42/Rac) activated kinase 1 (PAK1), B-cell lymphoma 2 (Bcl-2) and vascular endothelial growth factor (VEGF)) in order to elucidate further potentially affected signaling pathways.
Results: The aim of this review was to summarize studies regarding the effects of N. sativa in cancer generally, with a focus on breast cancer, its anti-metastatic effects, and how N. sativa modulates the cytotoxicity of Natural Killer cells that play a crucial role in tumor surveillance.
Conclusion: In summary, the data suggest that N. sativa might be used for its anti-cancer and antimetastatic properties and as an immune system activator against cancer.
Methods: The selection criteria for references were applied through Pubmed with “N. sativa and cancer”, “N. sativa and breast cancer”, “N. sativa and metastasis”, “N. sativa and cytotoxicity of natural killer cells”. The pathway analysis was performed using the PANTHER tool by using five randomly selected N. sativa affected genes (Cyclin D1, P53, p21 protein (Cdc42/Rac) activated kinase 1 (PAK1), B-cell lymphoma 2 (Bcl-2) and vascular endothelial growth factor (VEGF)) in order to elucidate further potentially affected signaling pathways.
Results: The aim of this review was to summarize studies regarding the effects of N. sativa in cancer generally, with a focus on breast cancer, its anti-metastatic effects, and how N. sativa modulates the cytotoxicity of Natural Killer cells that play a crucial role in tumor surveillance.
Conclusion: In summary, the data suggest that N. sativa might be used for its anti-cancer and antimetastatic properties and as an immune system activator against cancer.
Keywords: Nigella sativa; breast cancer; cancer; metastasis; natural killer cells; tumor surveillance
Document Type: Review Article
Publication date: October 1, 2020
This article was made available online on May 12, 2020 as a Fast Track article with title: "Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity".
- Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content