Skip to main content

Drugs that Inhibit Mycolic Acid Biosynthesis in Mycobacterium tuberculosis

Buy Article:

Your trusted access to this article has expired.

$68.00 + tax (Refund Policy)

Tuberculosis resurged in the late 1980s and now kills more than 2 million people a year. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multidrug- resistant (MDR) strains have created much scientific interest in developing new antimycobacterial agents to both treat Mycobacterium tuberculosis strains resistant to existing drugs, and shorten the duration of short-course treatment to improve patient compliance. Bacterial cell-wall biosynthesis is a proven target for new antibacterial drugs. Mycolic acids, which are key components of the mycobacterial cell wall, are α-alkyl, β-hydroxy fatty acids, with a species-dependent saturated “short” arm of 20-26 carbon atoms and a “long” meromycolic acid arm of 50-60 carbon atoms. The latter arm is functionalized at regular intervals by cyclopropyl, α-methyl ketone, or α-methyl methylethers groups. The mycolic acid biosynthetic pathway has been proposed to involve five distinct stages: (i) synthesis of C20 to C26 straight-chain saturated fatty acids to provide the α-alkyl branch; (ii) synthesis of the meromycolic acid chain to provide the main carbon backbone, (iii) modification of this backbone to introduce other functional groups; (iv) the final Claisen-type condensation step followed by reduction; and (v) various mycolyltransferase processes to cellular lipids. The drugs shown to inhibit mycolic acid biosynthesis are isoniazid, ethionamide, isoxyl, thiolactomycin, and triclosan. In addition, pyrazinamide was shown to inhibit fatty acid synthase type I which, in turn, provides precursors for fatty acid elongation to long-chain mycolic acids by fatty acid synthase II. Here we review the biosynthesis of mycolic acids and the mechanism of action of antimicrobial agents that act upon this pathway. In addition, we describe molecular modeling studies on InhA, the bona-fide target for isoniazid, which should improve our understanding of the amino acid residues involved in the enzyme's mechanism of action and, accordingly, provide a rational approach to the design of new drugs.

Keywords: antimycobacterial agents; biosynthesis; enzymes mechanism; health threat; meromycolic acid; mycobacterium tuberculosis; mycolic acid; physiology; pyrazinamide; tuberculosis

Document Type: Review Article

Publication date: September 1, 2002

More about this publication?
  • Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal contains a series of timely in-depth reviews written by leaders in the field covering a range of current topics in both pre-clinical and clinical areas of Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content