Skip to main content
padlock icon - secure page this page is secure

Pathogenic Genes Selection Model of Genetic Disease based on Network Motifs Slicing Feedback

Buy Article:

$68.00 + tax (Refund Policy)

Background: Finding the pathogenic gene is very important for understanding the pathogenesis of the disease, locating effective drug targets and improving the clinical level of medical treatment. However, the existing methods for finding the pathogenic genes still have limitations, for instance the computational complexity is high, and the combination of multiple genes and pathways has not been considered to search for highly related pathogenic genes and so on.

Methods: We propose a pathogenic genes selection model of genetic disease based on Network Motifs Slicing Feedback (NMSF). We find a point set which makes the conductivity of the motif minimum then use it to substitute for the original gene pathway network. Based on the NMSF, we propose a new pathogenic genes selection model to expand pathogenic gene set.

Results: According to the gene set we have obtained, selection of key genes will be more accurate and convincing. Finally, we use our model to screen the pathogenic genes and key pathways of liver cancer and lung cancer, and compare the results with the existing methods.

Conclusion: The main contribution is to provide a method called NMSF which simplifies the gene pathway network to make the selection of pathogenic gene simple and feasible. The fact shows our result has a wide coverage and high accuracy and our model has good expeditiousness and robustness.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Genetic disease; algorithm; gene pathway network; network motifs slicing feedback; pathogenic gene set expansion; robustness

Document Type: Research Article

Publication date: October 1, 2019

More about this publication?
  • Current Proteomics research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more