Skip to main content
padlock icon - secure page this page is secure

ML-rRBF-ECOC: A Multi-Label Learning Classifier for Predicting Protein Subcellular Localization with Both Single and Multiple Sites

Buy Article:

$68.00 + tax (Refund Policy)

Background: The subcellular localization of a protein is closely related with its functions and interactions. More and more evidences show that proteins may simultaneously exist at, or move between, two or more different subcellular localizations. Therefore, predicting protein subcellular localization is an important but challenging problem.

Observation: Most of the existing methods for predicting protein subcellular localization assume that a protein locates at a single site. Although a few methods have been proposed to deal with proteins with multiple sites, correlations between subcellular localization are not efficiently taken into account. In this paper, we propose an integrated method for predicting protein subcellular localizations with both single site and multiple sites.

Methods: Firstly, we extend the Multi-Label Radial Basis Function (ML-RBF) method to the regularized version, and augment the first layer of ML-RBF to take local correlations between subcellular localization into account. Secondly, we embed the modified ML-RBF into a multi-label Error-Correcting Output Codes (ECOC) method in order to further consider the subcellular localization dependency. We name our method ML-rRBF-ECOC. Finally, the performance of ML-rRBF-ECOC is evaluated on three benchmark datasets.

Results: The results demonstrate that ML-rRBF-ECOC has highly competitive performance to the related multi-label learning method and some state-of-the-art methods for predicting protein subcellular localizations with multiple sites. Considering dependency between subcellular localizations can contribute to the improvement of prediction performance.

Conclusion: This also indicates that correlations between different subcellular localizations really exist. Our method at least plays a complementary role to existing methods for predicting protein subcellular localizations with multiple sites.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Subcellular localization; error-correcting output codes; label correlations; multi-label; multi-label radial basis function; multiple sites

Document Type: Research Article

Publication date: October 1, 2019

More about this publication?
  • Current Proteomics research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more