
A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage
The applications of electrospun carbon fiber webs to the development of energy storages devices, including both supercapacitors and lithium ion batteries (LIBs), are reviewed. Following a brief discussion of the fabrication process and characterization methods for ultrafine electrospun
carbon fibers, recent advances in their performance as supercapacitors and LIB anode materials are summarized. Optimization of the overall electrochemical properties of these materials through choice of thermal treatment conditions, incorporation of additional active components (such as carbon
nanotubes, metal oxides, and catalysts), and generation of novel fibrous structures (such as core-shell, multi-channel or porous fibers) is highlighted. Further challenges related to improving the conductivity, surface area, and mechanical properties of the carbon nanofiber webs, as well as
the scale-up ability of the fabrication technique, are discussed.
Keywords: Carbon nanofiber; Electrospinning; Energy storage; Lithium-ion battery; Supercapacitor
Document Type: Research Article
Publication date: July 1, 2013
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content