
Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review
Generation of newborn neurons that form functional synaptic connections in the dentate gyrus of adult mammals, known as adult hippocampal neurogenesis, has been suggested to play critical roles in regulating mood, as well as certain forms of hippocampus-dependent learning and memory.
Environmental stress suppresses structural plasticity including adult neurogenesis and dendritic remodeling in the hippocampus, whereas physical exercise exerts opposite effects. Here, we review recent discoveries on the potential mechanisms concerning how physical exercise mitigates the stressrelated
depressive disorders, with a focus on the perspective of modulation on hippocampal neurogenesis, dendritic remodeling and synaptic plasticity. Unmasking such mechanisms may help devise new drugs in the future for treating neuropsychiatric disorders involving impaired neural plasticity.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: Physical exercise; dendritic remodeling; depression; hippocampal neurogenesis; stress; synaptic plasticity
Document Type: Review Article
Publication date: May 1, 2019
This article was made available online on March 21, 2019 as a Fast Track article with title: "Enhancement of Hippocampal Plasticity by Physical Exercise as a Polypill for Stress and Depression: A Review".
- CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites