Skip to main content
padlock icon - secure page this page is secure

Interplay Between Nitric Oxide and Brain-Derived Neurotrophic Factor in Neuronal Plasticity

Buy Article:

$63.00 + tax (Refund Policy)

Nitric oxide is a gaseous neuromodulator that displays a core role in several neuronal processes. Beyond regulating the release of neurotransmitters, nitric oxide also plays a role in cell differentiation and maturation in the central nervous system. Although the mode of action of nitric oxide is not fully understood, it involves the activation of soluble guanylate cyclase as well as the nitration and S-nitrosylation of specific amino acid residues in other proteins. Brain-derived neurotrophic factor is a member of neurotrophic factor family and, acting through its receptor tropomyosinrelated kinase B, increases the production of nitric oxide, modulates neuronal differentiation and survival, and plays a crucial role in synaptic plasticity, such as long-term potentiation. Furthermore, nitric oxide is an important regulator of the production of these factors. The aim of the present review is to present a condensed view of the evidence related to the interaction between nitric oxide and brain-derived neurotrophic factor. Additionally, we conducted bioinformatics analysis based on the amino acid sequences of brain-derived neurotrophic factor and tropomyosin-related kinase receptors, and proposed that nitric oxide might nitrate/S-nitrosylate these proteins. Thus, we suggest a putative direct mode of action between these molecules to be further explored.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Nitric oxide; S-nitrosylation; brain-derived neurotrophic factor; nitration; plasticity; tropomyosin-related kinase receptors

Document Type: Research Article

Publication date: 01 October 2015

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more