Skip to main content
padlock icon - secure page this page is secure

Role of Secretory Phospholipase A2 in CNS Inflammation: Implications in Traumatic Spinal Cord Injury

Buy Article:

$68.00 + tax (Refund Policy)

Secretory phospholipases A2 (sPLA2s) are a subfamily of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor (PAF). The hydrolysis of membrane phospholipids by PLA2 is a rate-limiting step for generation of eicosanoids and PAF. To date, more than 10 isozymes of sPLA2 have been found in the mammalian central nervous system (CNS). Under physiological conditions, sPLA2s are involved in diverse cellular responses, including host defense, phospholipid digestion and metabolism. However, under pathological situations, increased sPLA2 activity and excessive production of free fatty acids and their metabolites may lead to inflammation, loss of membrane integrity, oxidative stress, and subsequent tissue injury. Emerging evidence suggests that sPLA2 plays a role in the secondary injury process after traumatic or ischemic injuries in the brain and spinal cord. Importantly, sPLA2 may act as a convergence molecule that mediates multiple key mechanisms involved in the secondary injury since it can be induced by multiple toxic factors such as inflammatory cytokines, free radicals, and excitatory amino acids, and its activation and metabolites can exacerbate the secondary injury. Blocking sPLA2 action may represent a novel and efficient strategy to block multiple injury pathways associated with the CNS secondary injury. This review outlines the current knowledge of sPLA2 in the CNS with emphasis placed on the possible roles of sPLA2 in mediating CNS injuries, particularly the traumatic and ischemic injuries in the brain and spinal cord.

No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Phospholipases A; cytokines; excitatory amino acids; inflammation; ischemia; lipid metabolism; reactive oxygen species; spinal cord injury

Document Type: Research Article

Publication date: June 1, 2008

More about this publication?
  • CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will contain a series of timely in-depth reviews written by leaders in the field covering a range of current topics on drug targets involved in neurological and CNS disorders. As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more