Skip to main content
padlock icon - secure page this page is secure

Review on Targeted Drug Delivery Carriers Used in Nanobiomedical Applications

Buy Article:

$68.00 + tax (Refund Policy)

Targeted drug delivery (TDD) is an advanced and smart method of delivering drugs to the patients in a targeted sequence that increases the concentration of delivered drug only at the targeted body part of interest (organs/tissues/cells). This will in turn enhance efficacy of treatment by reducing side effects and the required dose of the drug. TDD ensures a certain defined minimally required constant amount of a therapeutic agent for a prolonged period of time to a targeted diseased area within the body. This helps maintain the required plasma and tissue drug levels in the body thereby avoiding any damage to the healthy tissue via the drug. Various drug carriers that are envisaged in advanced delivery systems are soluble polymers, inorganic nanoparticles, magnetic nanoparticles, biodegradable microsphere polymers (synthetic and natural), neutrophils, fibroblasts, artificial cells, lipoproteins, liposomes, micelles and immune micelle. In selecting such a vehicle, important factors to consider are chemical and physical properties drugs, side effects or cytotoxicity to healthy cells, route to be taken for the delivery of the drug, the targeted site, and the disease. As such, TDD formulations are prepared by considering the specific properties of target cells, nature of markers or transport carriers or vehicles, which convey drug to specific receptors, and ligands and physically modulated components.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Targeted drug delivery; drug delivery carriers; nanobiomedicine application; nanomedicine; nanoscience and nanotechnology; strategies of drug targeting

Document Type: Review Article

Publication date: August 1, 2019

More about this publication?
  • Current Nanoscience publishes authoritative reviews and original research reports, written by experts in the field on all the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano- structures, synthesis, properties, assembly and devices. Applications of nanoscience in biotechnology, medicine, pharmaceuticals, physics, material science and electronics are also covered. The journal is essential to all involved in nanoscience and its applied areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more