Skip to main content

Hepatitis C Virus, Oxidative Stress and Steatosis: Current Status and Perspectives

Buy Article:

$68.00 + tax (Refund Policy)

Reactive oxygen and nitrogen species (ROS/RNS), whether produced endogenously as a consequence of normal cell functions or derived from external sources, pose a constant threat to cells living in an aerobic environment. When the production of ROS/RNS overrides the antioxidant capability of the target cells, oxidative damage may occur as a consequence of the interaction with DNA, protein, and lipids. Hepatitis C virus (HCV) is a major cause of viral hepatitis. Although the molecular mechanisms of HCV pathogenesis remain unclear, oxidative stress is emerging as a key step and a major initiator in the development and the progression of liver damage, and the evaluation of oxidative stress may be useful for a better understanding of the pathogenesis of hepatitis C. Liver steatosis is one of the most important histopathological features in patients with chronic hepatitis C. Both viral and host factors contribute to the development of steatosis, and putative defects caused by ROS/RNS may be involved through abnormalities in lipid metabolism. This review is aimed to offer an updated overview of the relationship between oxidative stress and HCV infection, focusing on the significance of ROS/RNS in the pathogenesis of liver disease. The potential role played by oxidative stress in the pathogenic mechanisms of HCV-related steatosis is also discussed.





Keywords: Calcium; NS5A protein; aerobic environment; core protein; cytotoxicity; hepatitis C virus; hepatocellular carcinoma; infection; inflammation; insulin resistance; oxidative stress; peroxynitrite; replication; serological markers; steatosis

Document Type: Research Article

Publication date: 01 July 2011

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content