Skip to main content
padlock icon - secure page this page is secure

Oxygen Therapy in Acute Ischemic Stroke - Experimental Efficacy and Molecular Mechanisms

Buy Article:

$68.00 + tax (Refund Policy)

Hyperbaric (HBO) or normobaric oxygen (NBO) therapy applied in acute ischemic stroke aims to increase oxygen supply to the ischemic tissue and to reduce the extent of irreversible tissue damage. Over the past decade, multiple studies have clarified the potential and limitations of oxygen therapy in preclinical stroke models. Considering that the reduction of the infarct size amounts to 30-40%, the cerebroprotection induced by HBO is moderate. In the experimental setting, the effective time window of HBO initiation is only a few hours. Higher pressures (2.5-3 ATA) are more effective. Even though oxygen therapy has some effectiveness in permanent cerebral ischemia without vascular recanalization, it appears more promising for bridging of a transient ischemic period until reperfusion of the penumbra takes place. Compared to HBO, the implementation of NBO to the clinical setting would be substantially less demanding. Although recent experimental NBO-studies are promising, significant effectiveness of NBO was only shown in transient cerebral ischemia and if started within a narrow time window of maximum 30 minutes. Some studies suggest that the effect of HBO is superior to NBO both during transient and permanent cerebral ischemia, even if treatment initiation is delayed. Limited experimental studies do not support an additive effect of a sequential combination of both therapies at present.

While the therapeutic potential of oxygen therapy in ischemic stroke was considerably better defined over the past years, the underlying cerebroprotective mechanisms of oxygen therapy remain to be fully elucidated. Recent studies have demonstrated that physical oxygen therapy indeed improves oxygen supply of the ischemic penumbra as well as the cellular bioenergetic metabolism. Therefore, the mitochondria including their role in apoptotic cell death pathways as well as the modification of the cellular hypoxia sensor HIF-1α are considered as potential “downstream pathways” of oxygen therapy. Finally, its beneficial effects on the ischemic microcirculation suggest an important modification of various cell types within the neurovascular unit.



No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Hyperbaric oxygen therapy; acute stroke; cerebral Ischemia; efficacy; ischemic stroke; molecular mechanisms; neuroprotection; normobaric oxygen therapy

Document Type: Research Article

Publication date: March 1, 2009

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more