Skip to main content
padlock icon - secure page this page is secure

Plasma Membrane Electron Transport: A New Target for Cancer Drug Development

Buy Article:

$68.00 + tax (Refund Policy)

The view that mitochondrial electron transport is the only site of aerobic respiration and the primary bioenergetic pathway in mammalian cells is well established in the literature. Although this paradigm is widely accepted for most tissues, the situation is less clear for proliferating cells. Increasing evidence indicates that glycolytic ATP production contributes substantially to fulfilling the energy requirements of rapidly dividing somatic cells, many tumour cells, and self-renewing stem cells in hypoxic environments. Glycolytic cells have been shown to consume oxygen at the cell surface via plasma membrane electron transport (PMET), a process that oxidises intracellular NADH, supports glycolytic ATP production and may contribute to aerobic energy production. PMET, as determined by reduction of a cell-impermeable tetrazolium dye, is highly active in rapidly-dividing tumour cell lines, where it ameliorates intracellular reductive stress, originating from the mitochondrial TCA cycle. Thus, mitochondrial NADH production is linked to dye reduction outside the cell via the malate-aspartate shuttle. PMET activity increases several-fold under hypoxic conditions, consistent with the view that oxygen competes for electrons from this PMET system. In addition, ° cells that lack mitochondrial electron transport are characterised by elevated PMET presumably to recycle NADH, a role traditionally assumed by lactate dehydrogenase. PMET presents an excellent target for developing novel anticancer drugs that exploit its unique plasma membrane localisation. We propose that PMET is a ubiquitous, high-capacity acute NADH redox-regulatory system responsible for maintaining the mitochondrial NADH/NAD+ ratio. Blocking this pathway compromises the viability of rapidly proliferating cells that rely on PMET.





No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Plasma membrane electron transport; WST-1; anti-cancer drugs; glycolytic metabolism; mitochondria; reductive stress

Document Type: Research Article

Affiliations: Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand.

Publication date: December 1, 2006

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more