Skip to main content
padlock icon - secure page this page is secure

Amyloid Aggregation Inhibitory Mechanism of Arginine-rich D-peptides

Buy Article:

$68.00 + tax (Refund Policy)

It is widely believed that Alzheimer's disease pathogenesis is driven by the production and deposition of the amyloid-β peptide (Aβ) in the brain. In this study, we employ a combination of in silico and in vitro approaches to investigate the inhibitory properties of selected arginine-rich D-enantiomeric peptides (D-peptides) against amyloid aggregation. The D-peptides include D3, a 12-residue peptide with anti-amyloid potencies demonstrated in vitro and in vivo, RD2, a scrambled sequence of D3, as well as truncated RD2 variants. Using a global optimization method together with binding free energy calculations followed by molecular dynamics simulations, we perform a detailed analysis of D-peptide binding to Aβ monomer and a fibrillar Aβ structure. Results obtained from both molecular simulations and surface plasmon resonance experiments reveal a strong binding of D3 and RD2 to Aβ, leading to a significant reduction in the amount of β structures in both monomer and fibril, which was also demonstrated in Thioflavin T assays. The binding of the D-peptides to Aβ is driven by electrostatic interactions, mostly involving the D-arginine residues and Glu11, Glu22 and Asp23 of Aβ. Furthermore, we show that the anti-amyloid activities of the D-peptides depend on the length and sequence of the Dpeptide, its ability to form multiple weak hydrophobic interactions with Aβ, as well as the Aβ oligomer size.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Amyloid beta; D-peptides; ThT assay; amyloid inhibition; in silico; surface plasmon resonance

Document Type: Research Article

Publication date: April 1, 2014

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more