Skip to main content
padlock icon - secure page this page is secure

Cell Cycle Regulation in the G1 Phase: A Promising Target for the Development of New Chemotherapeutic Anticancer Agents

Buy Article:

$68.00 + tax (Refund Policy)

As a result of substantial advances in recent cancer biology, cell cycle regulation in the G1 phase has attracted a great deal of attention as a promising target for the research and treatment of cancer. Many of the important genes associated with G1 regulation have been shown to play a key role in proliferation, differentiation and oncogenic transformation and programmed cell death (apoptosis). Currently, a variety of cytostatic agents that affects G1 progression and / or G1 / S transition are being evaluated in clinical trials. Flavopiridol is a potent inhibitor of cyclin-dependent kinases (CDKs). UCN-01 was originally found to be a PKC-selective protein kinase antagonist. More recent studies have revealed that this agent can also inhibit several CDKs and the checkpoint kinase CHK1. FR901228, MS-27-275 and SAHA are histone deacetylase inhibitors that induce changes in the transcription of specific genes via the hyperacetylation of histones. The proteasome inhibitor PS-341 disrupts the degradation process of intracellular proteins, including cell cycle regulatory proteins such as cyclins. R115777, SCH66336 and BMS-214662 are non-peptidic farnesyl transferase inhibitors that prevent p21 ras oncogene activation. Rapamycin derivative CCI-779 downregulates signals through S6 kinase and FRAP (FKBP-rapamycin associating protein), affecting the expression levels of mRNAs important for progression from G1 to S phase. 17-Allylaminogeldanamycin targets the Hsp-90 (heat shock protein-90) family of cellular chaperones regulating the function of signaling proteins. TNP-470 (AGM-1470), a fumagillin derivative shows antiangiogenic action through binding to MetAP-2 (methionine aminopeptidase-2). The antitumor sulfonamide E7070, causing a cellular accumulation in the G1 phase, has been shown to suppress the activation of CDK2 and cyclin E expression in HCT116 colorectal cancer cell line highly sensitive to the drug. With respect to several growth factor receptors such as EGFR, PDGFR, bFGFR and VEGFR, potent and specific inhibitors of receptor tyrosine kinases have been also examined as hopeful drug candidates. In this report, we review the current status of extensive efforts directed towards the discovery and development of new chemotherapeutic anticancer agents targeting cell cycle regulation in the G1 phase, with particular focus on the compounds undergoing clinical investigations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: G1 PHASE; Geldanamycin Derivative; Histone Deacetylase Inhibitors; Proteasome Inhibitor; Rapamycin

Document Type: Review Article

Publication date: October 1, 2001

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more