Skip to main content
padlock icon - secure page this page is secure

Effects of Cationic Charge on Three-Dimensional Structures of Intercalative Complexes Structure of a bis-Intercalated DNA Complex Solved by MAD Phasing

Buy Article:

$68.00 + tax (Refund Policy)

We characterize intercalative complexes as either high charge and low charge. In low charge complexes, stacking interactions appear to dominate stability and structure. The dominance of stacking is evident in structures of daunomycin, nogalamycin, ethidium, and triostin A/echinomycin. By contrast in a DNA complex with the tetracationic metalloporphyrin CuTMPyP4 [copper (II) meso-tetra(N-methyl-4-pyridyl)porphyrin], electrostatic interactions appear to draw the porphyrin into the duplex interior, extending the DNA along its axis, and unstacking the DNA. Similarly, DNA complexes of tetracationic ditercalinium and tetracationic flexi-di show significant unstacking. Here we report x-ray structures of complexes of the tetracationic bis-intercalator D232 bound to DNA fragments d(CGTACG) and d(Br CGTA Br CG). D232 is analogous to ditercalinium but with three methylene groups inserted between the piperidinium groups. The extension of the D232 linker allows it to sandwich four base pairs rather than two. In comparison to CuTMPyP4, flexi-di and ditercalinium, stacking interactions of D232 are significantly improved. We conclude that it is not sufficient to characterize intercalators simply by net charge. One anticipates strong electrostatic forces when cationic charge is focused to a small volume or region near DNA and so must consider the extent to which cationic charge is focused or distributed. In sum, ditercalinium, with a relatively short linker, focuses cationic charge more narrowly than does D232. So even though the net charges are equivalent, electrostatic charges are expected to be of greater structural significance in the ditercalinium complex than in the D232 complex.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: D232; FPRIME; KRAMER; MAD Phasing; X ray structures; b conformation; bis intercalated DNA comlex; daunomycin; ditercalinium; electrostatic collapse; electrostatic forces; ethidium; global base base paramters; groove width; intercalative complexs; local inter base pair parameters; mogalamycin; nucleic acid conformational classes; phasing statistics; sequence specific variations; stacking; tetractionic metalloporphyrin CuTMPyP4 copper meso; three dimensional structures

Document Type: Review Article

Publication date: January 1, 2000

More about this publication?
  • Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews written by leaders in the field covering a range of the current topics in medicinal chemistry. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more