
On the Temporal Self-Organisation of Saccharomyces cerevisae
The budding yeast Saccharomyces cerevisiae has been one of the premier models for the study of eukaryote molecular biology for over 50 years. These studies have revealed a complex and robust yeast phenome and elucidated many of the underlying principles common to all eukaryotes including DNA, RNA, protein and metabolite interaction networks. However the degree complexity and integration of the cellular network has made dissecting the temporal dynamics of the phenotype a rather daunting task. Here I review work on glycolytic oscillation, oscillation observed in continuous culture and colony pattern formation, and find that redox is a central thread underpinning these phenomena. The outputs of the systems involve sub-networks that are at the core of the cellular network, e.g., glycolysis, stress response, respiration, cell cycle, amino acid biosynthesis, leading to the conclusion that a fundamental redox attractor underpins these core cellular processes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: Saccharomyces cerevisae; glycolytic; oscillation; phenotype
Document Type: Review Article
Affiliations: Systems Biology Institute, 9S3, Shinanomachi Research Park, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
Publication date: December 1, 2004
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Ingenta Connect is not responsible for the content or availability of external websites