Skip to main content
padlock icon - secure page this page is secure

Virtual Screening Against M. tuberculosis 7,8-Diaminopelargonic Acid Synthase (MtbBioA) and In Silico Toxicity Evaluation of Top Hits

Buy Article:

$68.00 + tax (Refund Policy)

Tuberculosis (TB) remains to be one of the major public health concerns worldwide. The continuing emergence of Mtb strains resistant to known drugs makes the campaign for successful TB control and treatment very difficult to accomplish. It is therefore imperative to search for newer chemical entities that could inhibit the growing number of putative drug targets for the development of more efficient anti-tubercular drugs. One such ideal target is the 7, 8- diaminopelargonic acid aminotransferase enzyme (BioA). This enzyme is mainly involved in the bacterium’s lipid biosynthesis and metabolism machinery, and is considered as a very promising target due to the fact that humans lack this enzyme. In this study, structure-based pharmacophore screening, molecular docking, and ADMET evaluation of compounds obtained from the InterBioScreen Synthetic Compounds (IBS SC) were performed against the MtbBioA enzyme. Five compounds from the library showed more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM). Moreover, a pyridazinyladamantane 2-carboxylic acid and two sulfone derivatives have indicated good ADMET properties. These compounds are predicted to possess desirable properties of a lead and should be the subject of subsequent structural optimization and experimental bioactivity evaluations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: 7; 7-Keto-8-aminopelargonic acid (KAPA); 8-Diaminopelargonic acid synthase (BioA); ADMET; DAPA; Mycobacterium tuberculosis (Mtb); molecular docking; pharmacophore; virtual screening

Document Type: Research Article

Publication date: September 1, 2014

More about this publication?
  • Current Enzyme Inhibition aims to publish all the latest and outstanding developments in enzyme inhibition studies with regards to the mechanisms of inhibitory processes of enzymes, recognition of active sites, and the discovery of agonists and antagonists, leading to the design and development of new drugs of significant therapeutic value. Each issue contains a series of timely, in-depth reviews written by leaders in the field, covering a range of enzymes that can be exploited for drug development. Current Enzyme Inhibition is an essential journal for every pharmaceutical and medicinal chemist who wishes to have up-to-date knowledge about each and every development in the study of enzyme inhibition.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more