
Vitamin D: Evolutionary, Physiological and Health Perspectives
Vitamin D, the sunshine vitamin, has been important not only for the evolution of a healthy calcified vertebrate skeleton but it also evolved into a hormone that has a wide diversity of biologic effects. During exposure to sunlight the ultraviolet B radiation converts 7-dehydrocholesterol to previtamin D3 which in turn rapidly isomerizes to vitamin D3. Once formed, vitamin D3 is metabolized in the liver to 25-hydroxyvitamin D3 and in the kidneys to its active form 1,25- dihydroxyvitamin D3. 1,25-dihydroxyvitamin D3 interacts with its vitamin D receptor in calcium regulating tissues to regulate calcium metabolism and bone health. It is now recognized that most cells in the body have a vitamin D receptor and they also have the capability of producing 1,25-dihydroxyvitamin D3 which in turn is capable of regulating a wide variety of genes that have important functions in regulating cell growth, modulating immune function and cardiovascular health. Epidemiologic evidence and prospective studies have linked vitamin D deficiency with increased risk of many chronic diseases including autoimmune diseases, cardiovascular disease, deadly cancers, type II diabetes and infectious diseases. Vitamin D deficiency and insufficiency have been defined as a 25-hydroxyvitamin D <20 ng/ml and 21-29 ng/ml respectively. For every 100 IU of vitamin D ingested the blood level of 25-hydroxyvitamin D, the measure vitamin D status, increases by ∼1 ng/ml. It is estimated that children need at least 400-1000 IU of vitamin D a day while teenagers and adults need at least 2000 IU of vitamin D a day to satisfy their body's vitamin D requirement. It is estimated that 1 billion people worldwide are vitamin D deficient or insufficient. Correcting and preventing this deficiency could have an enormous impact on reducing health costs worldwide.
Keywords: 1,25-dihydroxyvitamin D; 25(OH)D; 25-hydroxyvitamin D; Caucasians; Cholecalciferol; DBP; Ergocalciferol; FGF 23; Provitamin D3; RANKL; UVB radiation; VDR; Vitamin D; autoimmune disease; cancer; diabetes; ergosterol; fat malabsorption syndrome; hyperparathyroidism; inflammatory bowel disease; lupus vulgaris; non-melanoma skin cancer; osteomalacia; osteopenia; osteoporosis; rheumatoid arthritis; skeleton; sunlight; vitamin D deficiency
Document Type: Research Article
Publication date: January 1, 2011
- Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
- Editorial Board
- Information for Authors
- Subscribe to this Title
- Call for Papers
- Ingenta Connect is not responsible for the content or availability of external websites
- Access Key
- Free content
- Partial Free content
- New content
- Open access content
- Partial Open access content
- Subscribed content
- Partial Subscribed content
- Free trial content