Skip to main content
padlock icon - secure page this page is secure

Multidrug Resistance Phenotype Mediated by the P-Glycoprotein-Like Transporter in Leishmania: A Search for Reversal Agents

Buy Article:

$68.00 + tax (Refund Policy)

Protozoan parasites are responsible for important diseases that threaten the lives of nearly one-quarter of the human population world-wide. Among them, leishmaniasis has become the second cause of death, mainly due to the emergence of parasite resistance to conventional drugs. P-glycoprotein (Pgp)-like transporters overexpression is a very efficient mechanism to reduce the intracellular accumulation of many drugs in cancer cells and parasitic protozoans including Plasmodium and Leishmania, thus conferring a multidrug resistance (MDR) phenotype. Therefore, there is a great clinical interest in developing inhibitors of these transporters to overcome such a resistance. Pgps are active pumps belonging to the ATPbinding cassette (ABC) superfamily of proteins, and consist of two homologous halves, each containing a transmembrane domain (TMD) involved in drug efflux, and a cytosolic nucleotide-binding domain (NBD) responsible for ATP binding and hydrolysis. Most conventional cancer MDR modulators interact with the drug-binding sites on the TMDs of Pgps, but they are also usually transported and the required concentrations for a permanent inhibition produce subsequent sideeffects that hamper their clinical use. Besides, they only poorly modulate the resistance in protozoan parasites. We review here a rational strategy developed to overcome the MDR phenotype in Leishmania, consisting in: i) the selection of an MDR Leishmania tropica line that overexpresses a Pgp-like transporter, ii) the use of their cytosolic NBDs as new pharmacological targets, iii) the search of new natural compounds that revert the MDR phenotype in Leishmania bybinding to the TMDs, iv) the combination of subdoses of the above selected modulators directed to both targets in the transporter, NBDs and TMDs, to accumulate their reversal effects while diminishing their toxicity. In this way, we have reverted the MDR phenotype in Leishmania, including the resistance to the most promising new antileishmania agents, the alkyl-lysophospholipids. This approach might be extrapolated to be used in other eukaryotic cells.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Multidrug Resistance; P-Glycoprotein; alkyl-lysophospholipids; leishmaniasis

Document Type: Review Article

Publication date: August 1, 2002

More about this publication?
  • Current Drug Targets aims to cover the latest and most outstanding developments on the medicinal chemistry and pharmacology of molecular drug targets e.g. disease specific proteins, receptors, enzymes, genes. Each issue of the journal will be devoted to a single timely topic, with series of in-depth reviews, written by leaders in the field, covering a range of current topics on drug targets. These issues will be organized and led by a guest editor who is a recognized expert in the overall topic. As the discovery, identification, characterisation and validation of novel human drug targets for drug discovery continues to grow; this journal will be essential reading for all pharmaceutical scientists involved in drug discovery and development.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more