Skip to main content
padlock icon - secure page this page is secure

Application of Glutathione as Anti-Oxidative and Anti-Aging Drugs

Buy Article:

$68.00 + tax (Refund Policy)

Glutathione (GSH), an abundant tripeptidyl molecule, plays pivotal roles in protecting cells against oxidative stress-induced cellular damage and in detoxifying xenobiotics and drug metabolism. GSH is now entering a new era of therapeutic applications. Decreased GSH levels are associated with the common features of aging as well as of a wide range of pathological conditions, including neurodegenerative disorders. Notably, GSH depletion and/or alterations in its metabolism appear to be crucial in the onset of Parkinson’s disease. Despite the fact that GSH is required for cell survival, the molecular mechanism that links GSH depletion to cell death remains poorly understood. Recently, considerable attention has been focused on a newly defined type of cell death: irondependent cell death, also referred to as “ferroptosis”. The iron chelator deferoxamine nearly abolishes ferroptosis induced by inhibiting GSH synthesis or cystine uptake by the xCT transporter. Deferoxamine preferentially abrogates the intralysosomal accumulation of iron and inhibits oxidative stress-induced lysosomal membrane permeabilization and cell death. The use of GSH and a prodrug derived from it can be useful, since the dysfunction of the GSH redox system appears to cause a variety of diseases including neurodegenerative disorders. However, the effectiveness of GSH as a therapeutic agent is limited because of its low bioavailability. We also review trials that have been designed to cope with this difficulty; e.g. the use of precursors such as N-acetyl cysteine and chemical modification such as methylation.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: N-acetylcysteine; Oxidative stress; cell death; cysteine; glutathione

Document Type: Research Article

Publication date: September 1, 2015

More about this publication?
  • Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism and disposition. The journal serves as an international forum for the publication of timely reviews in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments. The journal covers the following areas:

    In vitro systems including CYP-450; enzyme induction and inhibition; drug-drug interactions and enzyme kinetics; pharmacokinetics, toxicokinetics, species scaling and extrapolations; P-glycoprotein and transport carriers; target organ toxicity and interindividual variability; drug metabolism and disposition studies; extrahepatic metabolism; phase I and phase II metabolism; recent developments for the identification of drug metabolites and adducts.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more